Adaptive Mixed Hybrid and Macro - HybridFinite Element
نویسنده
چکیده
In this paper, we consider eecient multilevel based iterative solvers and ee-cient and reliable a posteriori error estimators for mixed hybrid and macro-hybrid nite element discretizations of elliptic boundary value problems. We give an overview concerning the state-of-the-art techniques for these nonconforming approaches and illustrate the performance of the adaptivity concepts realized by some selected numerical examples.
منابع مشابه
Mixed Finite Element Methods for Diffusion Equations on Nonmatching Grids
The hybridization technique is applied to replace the macro-hybrid mixed finite element problem for the diffusion equation by the equivalent cell-based formulation. The underlying algebraic system is condensed by eliminating the degrees of freedom which represent the interface flux and cell pressure variables to the system containing the Lagrange multipliers variables. An approach to the numeri...
متن کاملAnalysis of Evolution Macro-Hybrid Mixed Variational Problems
The purpose of this study is to apply composition duality methods in the qualitative analysis of evolution linear mixed variational problems. Primal and dual evolution mixed formulations are considered, as well as corresponding macro-hybrid variational models for parallel computing. The well-posedness, stability and convergence analysis of macro-hybrid mixed semi-discrete approximations is perf...
متن کاملA Simple Procedure to Develop Efficient & Stable Hybrid/Mixed Elements, and Voronoi Cell Finite Elements for Macro- & Micromechanics
A simple procedure to formulate efficient and stable hybrid/mixed finite elements is developed, for applications in macroas well as micromechanics. In this method, the strain and displacement field are independently assumed. Instead of using two-field variational principles to enforce both equilibrium and compatibility conditions in a variational sense, the independently assumed element strains...
متن کاملAdaptive Multiresolution Antenna Modeling Using Hierarchical Mixed-Order Tangential Vector Finite Elements
Hierarchical mixed-order tangential vector finite elements (TVFEs) for tetrahedra are attractive for accurate and efficient finite element or hybrid finite element/boundary integral (FE/BI) simulation of complicated electromagnetic problems. They provide versatility in the geometrical modeling of physical structures, guarantee solutions free of spurious modes, and allow a local increase of reso...
متن کاملAdaptive multigrid solution for mixed finite elements in 2-dimensional linear elasticity
We explain the implementation of adaptive multigrid methods for mixed finite element in its hybrid formulation using interelement Lagrange multipliers and static condensation. We apply this method to problems in linear elasticity using the stabilized BDM elements introduced by STENBERG. Therefore, a new type of grid transfer and a new error indicator is introduced. Numerical examples on unstruc...
متن کامل